Re: [心得] sqldf效率問題

看板R_Language作者 (攸藍)時間10年前 (2014/07/25 00:56), 10年前編輯推噓3(300)
留言3則, 2人參與, 最新討論串2/2 (看更多)
我最愛比速度了XDDD 新增dplyr跟plyr的比較 我來提供一個更快的,code如下: N = 1e4 x <- data.frame(Freq=runif(N,0,1),Category=c("T","F")) library(data.table) library(plyr) library(dplyr) library(sqldf) x_dt = data.table(x) setkey(x_dt, Category) Cate_group_dt = group_by(x_dt, Category) Cate_group_df = group_by(x_dt, Category) library(rbenchmark) benchmark(data_table = x_dt[, sum(Freq),by = Category], tapply = tapply(x$Freq, x$Category, FUN=sum), sqldf = sqldf("SELECT Category, sum(Freq) FROM x GROUP BY Category"), plyr_dt = aggregate(Freq ~ Category, data = x_dt, FUN=sum), plyr_dt2 = ddply(x_dt, .(Category), colwise(sum)), plyr_df = aggregate(Freq ~ Category, data = x, FUN=sum), plyr_df2 = ddply(x, .(Category), colwise(sum)), dplyr_dt = summarise(Cate_group_dt, sum(Freq)), dplyr_df = summarise(Cate_group_df, sum(Freq)), replications = 100, columns=c('test', 'replications', 'elapsed','relative', 'user.self'), order='relative') Result for N = 1e4: test replications elapsed relative user.self 2 tapply 100 0.07 1.000 0.08 1 data_table 100 0.10 1.429 0.09 8 dplyr_dt 100 0.14 2.000 0.14 9 dplyr_df 100 0.17 2.429 0.17 5 plyr_dt2 100 0.23 3.286 0.24 7 plyr_df2 100 0.23 3.286 0.23 3 sqldf 100 2.24 32.000 2.22 4 plyr_dt 100 2.61 37.286 2.60 6 plyr_df 100 3.88 55.429 3.88 # 這裡我多做幾次 tapply跟data.table其實有上有下,不分軒輊 Results for N = 1e6 test replications elapsed relative user.self 9 dplyr_df 20 0.51 1.000 0.46 1 data_table 20 0.52 1.020 0.48 8 dplyr_dt 20 0.52 1.020 0.43 2 tapply 20 0.99 1.941 0.87 5 plyr_dt2 20 1.54 3.020 1.32 7 plyr_df2 20 1.56 3.059 1.35 3 sqldf 20 39.51 77.471 37.68 4 plyr_dt 20 66.23 129.863 65.17 6 plyr_df 20 102.23 200.451 101.37 Results for N = 1e7 test replications elapsed relative user.self 5 dplyr_dt 20 4.83 1.000 4.03 6 dplyr_df 20 4.84 1.002 4.13 1 data_table 20 4.85 1.004 4.11 2 tapply 20 9.90 2.050 8.47 4 plyr_df2 20 15.90 3.292 12.98 3 plyr_dt2 20 16.01 3.315 13.01 資料不算太大時,data.table跟tapply算快,但是資料變大之後 dplyr跟data.table就差不多快。 接著測試如果有兩個group的話 N = 1e4 set.seed(100) x <- data.frame(Freq=runif(N,0,1),Category=c("T","F"), Category2 = sample(c("T","F"), N, replace = TRUE)) library(data.table) library(plyr) library(dplyr) library(sqldf) x_dt = data.table(x) setkey(x_dt, Category, Category2) Cate_group_dt = group_by(x_dt, Category, Category2) Cate_group_df = group_by(x_dt, Category, Category2) library(rbenchmark) benchmark(data_table = x_dt[, sum(Freq),by = key(x_dt)], tapply = tapply(x$Freq, list(x$Category, x$Category2), FUN=sum), plyr_dt2 = ddply(x_dt, .(Category, Category2), colwise(sum)), plyr_df2 = ddply(x, .(Category, Category2), colwise(sum)), dplyr_dt = summarise(Cate_group_dt, sum(Freq)), dplyr_df = summarise(Cate_group_df, sum(Freq)), replications = 100, columns=c('test', 'replications', 'elapsed','relative', 'user.self'),order='relative') Result for N = 1e4: test replications elapsed relative user.self 2 tapply 100 0.06 1.000 0.06 1 data_table 100 0.11 1.833 0.11 5 dplyr_dt 100 0.17 2.833 0.18 6 dplyr_df 100 0.17 2.833 0.17 4 plyr_df2 100 0.40 6.667 0.41 3 plyr_dt2 100 0.41 6.833 0.40 Result for N = 1e6: test replications elapsed relative user.self 1 data_table 20 0.39 1.000 0.33 5 dplyr_dt 20 0.39 1.000 0.36 6 dplyr_df 20 0.40 1.026 0.36 2 tapply 20 1.13 2.897 1.03 3 plyr_dt2 20 3.52 9.026 2.97 4 plyr_df2 20 3.59 9.205 3.09 Result for N = 1e7: test replications elapsed relative user.self 1 data_table 20 3.70 1.000 3.42 6 dplyr_df 20 3.73 1.008 3.33 5 dplyr_dt 20 3.75 1.014 3.22 2 tapply 20 11.89 3.214 10.37 3 plyr_dt2 20 35.99 9.727 29.56 4 plyr_df2 20 36.72 9.924 30.32 結果同一個類別的情況。 最後,測試結果得知data.table真的很快!!!! 而且dplyr也很快,還可以直接搭配data.frame,我覺得算是更方便 至於plyr的ddply,我個人覺得寫起來比較順手,可是速度就沒預期快了。 My environment: i7-3770K@4.3GHz 16G ram ※ 引述《kenshin528 (成立奧凶帝國!!)》之銘言: : 測試結果: : 當rows = 10,000時 : user system elapsed : SQLDF 0.05 0.00 0.94 : TAPPLY 0.00 0.00 0.34 : -------------------------------- : rows = 1,000,000: : user system elapsed : SQLDF 2.30 0.03 4.34 : TAPPLY 0.32 0.00 0.40 : -------------------------------- : row = 100,000,000: : user system elapsed : SQLDF 288.77 31.00 505.11 : TAPPLY 31.65 1.84 39.66 : 實驗環境: : CPU intel i5 4200 : RAM 8G -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 218.164.177.30 ※ 文章網址: http://www.ptt.cc/bbs/R_Language/M.1406220987.A.534.html

07/25 02:56, , 1F
比起data.table, 我覺得dplyr更泛用
07/25 02:56, 1F
昨天沒空去用dplyr XD,我今天再補上summarise的使用

07/25 22:46, , 2F
!! datatable果然是王道!
07/25 22:46, 2F
※ 編輯: celestialgod (218.164.185.109), 07/26/2014 02:10:56

07/26 11:51, , 3F
推推 又學到一招!
07/26 11:51, 3F
文章代碼(AID): #1JqJgxKq (R_Language)
討論串 (同標題文章)
文章代碼(AID): #1JqJgxKq (R_Language)