Re: [問題] grid生樣本 避免for迴圈

看板R_Language作者 (天)時間5年前 (2019/03/27 23:56), 5年前編輯推噓5(5018)
留言23則, 4人參與, 5年前最新討論串3/4 (看更多)
1. Vectorize用的mapply,其實還是迴圈,而且表現更糟 2. rt沒有辦法直接執行原PO想要的那種方式,你可以自己用Rcpp刻一個 3. 花時間查資料,有時候不如看文件或是source code來的有效 Vectorize直接看應該不難找到重點 rt可以直接看文件 會看到df degrees of freedom (> 0, maybe non-integer). df = Inf is allowed. 這裡很明顯告訴你他不能用vector of degrees of freedom.... 下面我比較一下幾種做法: n <- 20 theta <- seq(0, 1, len=100) + 0.001 # add small value to avoid warning for_loop_rt <- function(n, theta) { stopifnot(length(n) == 1, abs(n - floor(n)) < 1e-8) X <- matrix(NA, n, length(theta)) for (i in seq_along(theta)) X[ , i] <- rt(n, theta[i]) return(X) } library(compiler) for_loop_rt_compiled <- cmpfun(for_loop_rt) rt_vectorized <- Vectorize(rt) library(microbenchmark) microbenchmark( sapply = sapply(theta, function(t) rt(20, 1/t)), vectorized = rt_vectorized(rep(n, length(theta)), theta, ncp = rep(0, length(theta))), for_loop = for_loop_rt(n, theta), for_loop_cmpfun = for_loop_rt_compiled(n, theta) ) # Unit: microseconds # expr min lq mean median uq max neval # sapply 556.8 576.10 597.278 584.30 594.25 1639.1 100 # vectorized 898.6 923.45 1041.179 936.45 961.45 2637.4 100 # for_loop 546.4 557.00 649.992 564.85 571.65 5844.1 100 # for_loop_cmpfun 541.9 558.65 679.358 566.45 573.85 2290.1 100 這結果,很諷刺地告訴你用Vectorize只是讓事情更糟而已XDDDDDD 然後反而用for loop最快.... 這件事情其實我有在板上談過.... matrix操作 R真的很快.... 試著相信R一下^.< ※ 引述《locka (locka)》之銘言: : 感謝 celestialgod 版主大大提點: : 以前以為 *apply 家族的函數就已經是向量化(vectorized)的寫法了 : 查了資料才發現其實底層背後還是有 for 迴圈 (覺得震撼啊...) : 試試看這樣的寫法 : theta <- seq(0,1,len=100) : df <- rep(19,len=100) : n <- rep(20,len=100) : vrt <- Vectorize(rt) : x <- vrt(n=n, df=df, ncp=1/theta) : 於是 x[,1] ... x[,100] 就是100個 n 等於20 然後對應各自 delta 值的 t 分配樣本了 : (但是不知道 df, n 的預先定義有沒有意義?) : 請版上各位高手再指點~ 謝謝大家 : ====== : 補充: : 但還是有查到 *apply function 的好處: : 1. 程式易讀性 : 2. 會 pre-allocate 向量的記憶體空間 : 2. 只影響區域變數不會改變全域變數 : ref: https://www.r-bloggers.com/vectorization-in-r-why/ : ※ 引述《ntpuisbest (阿龍)》之銘言: : : n <- 20 : : theta=seq(0,1,len=100) : : rt(n ,1/theta ) : : 如題 : : 我想要生100組 ,每組都是n=20的t分配樣本 : : 只是這100組的theta都不一樣 : : 我像上面那樣打 只會回傳20個樣本 : : 並不是我想要的 2000個樣本 請問要如何打才能要我要的結果 : : 想避免for loop : : 用loop的話 我知道怎麼做 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 119.14.59.166 ※ 文章網址: https://www.ptt.cc/bbs/R_Language/M.1553702206.A.0CA.html ※ 編輯: celestialgod (119.14.59.166), 03/28/2019 00:10:33

03/28 00:04, 5年前 , 1F
竟然…!(登愣XDD
03/28 00:04, 1F

03/28 00:06, 5年前 , 2F
但還是想請問c大:1. 當初怎麼知道Vectorize 背後用的是 ma
03/28 00:06, 2F

03/28 00:06, 5年前 , 3F
pply?
03/28 00:06, 3F
乖乖在console裡面輸入mapply就可以看到了XD

03/28 00:06, 5年前 , 4F
2. 如何判斷 rt() 沒辦法用向量化的方式做?
03/28 00:06, 4F

03/28 00:06, 5年前 , 5F
還是必須說,大大太神了
03/28 00:06, 5F
看文件,df不支援放向量

03/28 00:16, 5年前 , 6F
自問自答1:help("Vectorize")就有了。
03/28 00:16, 6F

03/28 00:16, 5年前 , 7F
衍生問題3:所以 Vectorize(f) 只是單純把又臭又長的mapply
03/28 00:16, 7F

03/28 00:16, 5年前 , 8F
(f…)包起來,實際上跟直接用mapply比並沒有差?
03/28 00:16, 8F
Vectorize只是幫你用mapply包起來沒錯,比直接用mapply還慢 因為會有一些overhead... 建議就是直接用迴圈包起來,像我上面那樣做就好XD

03/28 00:26, 5年前 , 9F
df degrees of freedom (> 0, maybe non-integer). df = In
03/28 00:26, 9F

03/28 00:26, 5年前 , 10F
f is allowed.
03/28 00:26, 10F

03/28 00:26, 5年前 , 11F
不是只是說 df 參數可以是無限大(Inf)的意思嗎?還是我理解
03/28 00:26, 11F
對 (Inf 就normal)

03/28 00:26, 5年前 , 12F
錯誤?
03/28 00:26, 12F

03/28 00:26, 5年前 , 13F
哪裡有說他不能用vector of degrees of freedom?
03/28 00:26, 13F
基本上沒寫可以就是不行XDD,不然像是n, prob什麼都會寫可以輸入vector ※ 編輯: celestialgod (119.14.59.166), 03/28/2019 00:39:10

03/28 00:46, 5年前 , 14F
感謝釋疑,但又有疑問了(舉手) 最後一個 >"<
03/28 00:46, 14F

03/28 00:46, 5年前 , 15F
所以一般所謂R的向量化到底是什麼意思啊??如果*apply, Ve
03/28 00:46, 15F

03/28 00:46, 5年前 , 16F
ctorize 都不是的話。(先謝謝版主大大一一耐心回覆!)
03/28 00:46, 16F
我覺得這篇寫得很好,先看這篇吧XD http://alyssafrazee.com/2014/01/29/vectorization.html ※ 編輯: celestialgod (118.163.170.73), 03/28/2019 14:00:37

03/28 17:23, 5年前 , 17F
http://bit.ly/2WqRtYt 這篇大概把幾種(但不限於R)向
03/28 17:23, 17F

03/28 17:25, 5年前 , 18F
量化的特徵、速度快的(多種)原因、以及何時還是用for
03/28 17:25, 18F

03/28 17:26, 5年前 , 19F
就好。一點點資工知識應該就可以看懂。
03/28 17:26, 19F

03/28 17:55, 5年前 , 20F
樓上這篇跟我上一篇貼的一樣啊XD
03/28 17:55, 20F

03/28 18:06, 5年前 , 21F
喔。XD。
03/28 18:06, 21F

04/02 14:35, 5年前 , 22F
新版本的R應該不太需要用compiler了。
04/02 14:35, 22F

04/02 15:27, 5年前 , 23F
基於測試,還是加進去看看
04/02 15:27, 23F
文章代碼(AID): #1Scvq-3A (R_Language)
文章代碼(AID): #1Scvq-3A (R_Language)