[問題] data.table資料轉換

看板R_Language作者 (天)時間2年前 (2022/02/20 15:03), 2年前編輯推噓0(001)
留言1則, 1人參與, 2年前最新討論串1/1
[問題類型]: 經驗諮詢(我想用R 連接某些資料庫,請問大家的經驗) [軟體熟悉度]: 開發者 [問題敘述]: 原資料 NodeID InProductionTime Quantity Censor FailureTime Node1 2021/1/1 2 1 N/A Node1 2021/1/1 1 0 2021/4/1 Node1 2021/1/1 1 0 2021/6/1 Node1 2021/4/1 1 0 2021/7/1 Node2 2021/4/1 2 1 N/A Node2 2021/4/1 1 0 2021/7/1 Node3 2021/5/1 4 1 N/A Node3 2021/5/1 1 0 2021/7/1 Node3 2021/7/1 1 0 2021/9/1 補充說明 censor=1的 都是安裝紀錄 censor=0的是失敗紀錄 但是我要轉換的目標是存活紀錄跟失敗紀錄 如果當初安裝的裝置都失敗了 就不該有當初的安裝紀錄 或是數量要減少 預期結果 NodeID InProductionTime Quantity Censor FailureTime Node1 2021/6/1 1 1 N/A Node1 2021/7/1 1 1 N/A Node1 2021/1/1 1 0 2021/4/1 Node1 2021/1/1 1 0 2021/6/1 Node1 2021/4/1 1 0 2021/7/1 Node2 2021/4/1 1 1 N/A Node2 2021/7/1 1 1 N/A Node2 2021/4/1 1 0 2021/7/1 Node3 2021/5/1 3 1 N/A Node3 2021/9/1 1 1 N/A Node3 2021/5/1 1 0 2021/7/1 想問問看有沒有做過這個資料轉換的經驗 我自己寫了一版 但是我不是很滿意現在的寫法 想說問問看有沒有其他人有其他想法 PS: 原資料的censor=0的數量很大 也不太可能先展開censor=0然後做計算 PS2: censor=1的時候 quantity有可能>1 但目前程式沒辦法考慮到這種情況 # EX: # Node4 2021/6/1 2 1 N/A # Node4 2021/6/1 2 0 2021/8/1 # Node4 2021/8/1 1 0 2021/9/1 # 預期輸出 # Node4 2021/8/1 1 1 N/A # Node4 2021/9/1 1 1 N/A # Node4 2021/6/1 2 0 2021/8/1 # Node4 2021/8/1 1 0 2021/9/1 [程式範例]: library(data.table) library(lubridate) library(magrittr) DT <- data.table( nodeId = c("Node1", "Node1", "Node1", "Node1", "Node2", "Node2", "Node3", "Node3", "Node3"), inProductionTime = as_date(c("2020-01-01", "2020-01-01", "2020-01-01", "2020-04-01", "2020-04-01", "2020-04-01", "2020-05-01", "2020-05-01", "2020-07-01")), quantity = c(2L, 1L, 1L, 1L, 2L, 1L, 4L, 1L, 1L), censor = c(1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L), failureTime = as_date(c(NA, "2020-04-01", "2020-06-01", "2020-07-01", NA, "2020-07-01", NA, "2020-07-01", "2020-09-01")) ) DT[ , `:=`( UID = paste(nodeId, format(inProductionTime, "%Y%m%d"), sep = "-"), ReplacedUID = ifelse( is.na(failureTime), NA, paste(nodeId, format(failureTime, "%Y%m%d"), sep = "-") ) )] %>% `[`(, index := 1:.N, by = .(nodeId)) censoredDT <- DT[ , .( index, quantity, UID, censor, newUIDs = list(na.omit(ReplacedUID[!ReplacedUID %in% UID])) ), by = .(nodeId)] %>% `[`(censor == 1) %>% `[`(, quantity := quantity - sapply(newUIDs, length)) %>% { rbind( .[quantity > 0, .(nodeId, index, quantity, censor, UID)], .[ , .(quantity=1, UID = unlist(newUIDs)), by = .(nodeId, index, censor)] ) } %>% `[`(, inProductionTime2 := tstrsplit(UID, "-", fixed=TRUE, keep=2L)) %>% `[`(, `:=`(inProductionTime = as_date(inProductionTime2), failureTime = as_date(NA))) resultDT <- rbind( censoredDT[ , .(nodeId, inProductionTime, quantity, censor, failureTime)], DT[censor == 0, .(nodeId, inProductionTime, quantity, censor, failureTime)] ) %>% `[`(order(nodeId, -censor, inProductionTime)) 不知道有沒有人有處理過類似的資料 有更好的寫法可以提供給我參考 [環境敘述]: R-4.0.3 on Windows [關鍵字]: -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.32.179.120 (臺灣) ※ 編輯: celestialgod (114.32.179.120 臺灣), 02/20/2022 15:45:55

02/20 15:53, 2年前 , 1F
關於轉換的邏輯,有沒有簡單一點的描述呢?
02/20 15:53, 1F
我今天Node1 1/1 有兩個裝置 安裝上去了 這是 第一筆資料 NodeID InProductionTime Quantity Censor FailureTime Node1 2021/1/1 2 1 N/A 但是我有失敗裝置紀錄 NodeID InProductionTime Quantity Censor FailureTime Node1 2021/1/1 1 0 2021/4/1 Node1 2021/1/1 1 0 2021/6/1 Node1 2021/4/1 1 0 2021/7/1 所以我知道 1/1安裝的兩個裝置 分別在4/1 跟 6/1 死掉 被換下來了 又還有一個資料告訴你說 4/1安裝的裝置 在 7/1死掉了 結果上面兩個資料 我要整理成 1. 6/1安裝的裝置還活著 2. 7/1安裝的裝置還活著 3. 三筆失敗的紀錄 預期結果如下: # NodeID InProductionTime Quantity Censor FailureTime # Node1 2021/6/1 1 1 N/A # Node1 2021/7/1 1 1 N/A # Node1 2021/1/1 1 0 2021/4/1 # Node1 2021/1/1 1 0 2021/6/1 # Node1 2021/4/1 1 0 2021/7/1 ※ 編輯: celestialgod (114.32.179.120 臺灣), 02/20/2022 16:03:30 ※ 編輯: celestialgod (114.32.179.120 臺灣), 02/20/2022 16:16:03 17:20更新, 我找到一個方法了 # raw data DT <- data.table( nodeId = c( "Node1", "Node1", "Node1", "Node1", "Node2", "Node2", "Node3", "Node3", "Node3", "Node4", "Node4", "Node4" ), inProductionTime = as_date(c("2020-01-01", "2020-01-01", "2020-01-01", "2020-04-01", "2020-04-01", "2020-04-01", "2020-05-01", "2020-05-01", "2020-07-01", "2020-06-01", "2020-06-01", "2020-08-01")), quantity = c(2L, 1L, 1L, 1L, 2L, 1L, 4L, 1L, 1L, 2L, 2L, 1L), censor = c(1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L), failureTime = as_date(c(NA, "2020-04-01", "2020-06-01", "2020-07-01", NA, "2020-07-01", NA, "2020-07-01", "2020-09-01", NA, "2020-08-01", "2020-09-01")) ) # expand censor == 0 & quantity > 1的node expandedDT <- DT[(censor == 0L) & (quantity > 1L), .(idx = unlist(1:quantity)), by = .(nodeId, inProductionTime, quantity, censor, failureTime)] %>% `[`( , `:=`(idx = NULL , quantity = 1)) DT[(censor == 0L) & (quantity > 1L), quantity := 0] newDT <- rbind(DT[quantity > 0], expandedDT) # 建立UIDs installedUidDT <- newDT[ censor == 1, .(UIDs = list(paste(nodeId, format(inProductionTime, "%Y%m%d"), 1:quantity, sep = "-"))), by = .(nodeId) ] # 建立failed的index (同個production time死掉的裝置 要做編號) newDT[censor == 0, failedIndex := 1:.N, by = .(nodeId, inProductionTime, quantity)] # 建出 censor = 1的完整列表 censoredDT <- newDT[ censor == 0, .( replacedUIDs = list(paste(nodeId, format(inProductionTime, "%Y%m%d"), failedIndex, sep = "-")), newUIDs = list(paste(nodeId, format(failureTime, "%Y%m%d"), failedIndex, sep = "-")) ), by = .(nodeId, quantity) ] %>% merge(installedUidDT, by = c("nodeId")) %>% `[`(, .(currentUID = do.call( c, list( setdiff(do.call(c, UIDs), do.call(c, replacedUIDs)), setdiff(do.call(c, newUIDs), do.call(c, replacedUIDs)) ) )), by = .(nodeId)) %>% `[`( , inProductionTimeStr := tstrsplit(currentUID, "-", keep = 2L)) %>% `[`( , inProductionTime := as_date(inProductionTimeStr)) %>% `[`( , .(quantity = .N), by = .(nodeId, inProductionTime)) %>% `[`( , `:=`(censor = 1, failureTime = as_date(NA))) # 最後結果 resultDT <- rbind( censoredDT, newDT[censor == 0, .(nodeId, inProductionTime, quantity, censor, failureTime)] ) %>% `[`(order(nodeId, -censor, inProductionTime)) ※ 編輯: celestialgod (114.32.179.120 臺灣), 02/20/2022 17:18:34
文章代碼(AID): #1Y4UVIHp (R_Language)
文章代碼(AID): #1Y4UVIHp (R_Language)