[分享] Strategies to Speedup R Code

看板R_Language作者 (天)時間9年前 (2016/02/02 09:15), 編輯推噓3(301)
留言4則, 2人參與, 最新討論串1/1
[關鍵字]: speedup R [出處]: http://www.r-bloggers.com/strategies-to-speedup-r-code/ [重點摘要]: The for-loop in R, can be very slow in its raw un-optimised form, especially when dealing with larger data sets. There are a number of ways you can make your logics run fast, but you will be really surprised how fast you can actually go. This posts shows a number of approaches including simple tweaks to logic design, parallel processing and Rcpp, increasing the speed by orders of several magnitudes, so you can comfortably process data as large as 100 Million rows and more. 從簡入深介紹一些R加速的技巧,不少在板上都有被討論過 -- R資料整理套件系列文: magrittr #1LhSWhpH (R_Language) http://tinyurl.com/1LhSWhpH data.table #1LhW7Tvj (R_Language) http://tinyurl.com/1LhW7Tvj dplyr(上) #1LhpJCfB (R_Language) http://tinyurl.com/1LhpJCfB dplyr(下) #1Lhw8b-s (R_Language) tidyr #1Liqls1R (R_Language) http://tinyurl.com/1Liqls1R -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.109.74.87 ※ 文章網址: https://www.ptt.cc/bbs/R_Language/M.1454375754.A.E01.html

02/02 18:47, , 1F
好文!
02/02 18:47, 1F

02/03 08:23, , 2F
看R-blogger讀到當下就聯想到C大諸多測快文~~
02/03 08:23, 2F

02/04 08:59, , 3F
Scaling data.table using index http://wp.me/pMm6L-tZA
02/04 08:59, 3F

02/04 09:01, , 4F
Solve R efficiently by data.table https://t.co/jmyUg
02/04 09:01, 4F
文章代碼(AID): #1Mi0DAu1 (R_Language)
文章代碼(AID): #1Mi0DAu1 (R_Language)