Re: 想問各位先進一個統計問題
看板Prob_Solve (計算數學 Problem Solving)作者yhliu (老怪物)時間2年前 (2022/10/23 09:40)推噓1(1推 0噓 7→)留言8則, 2人參與討論串2/2 (看更多)
※ 引述《Jerrychiang (Y.J.Chiang)》之銘言:
: 手機排版抱歉
: 同事問了一個問題我實在不知道怎麼解,放上來請各位先進指導,
: 樂透彩從1-49中任取6個號碼(取後不放回),小明選了2.3.5.7.11.13六個號,變數x
: 是小明選中的號碼數量,變數T是樂透抽出的六個號碼加總(ex 樂透抽出5.10.15.20.
: 25.30,X=1,T=105)
: Q1: T的期望值E[T],小明六個號碼都中的期望值E[T|X=6],以及全部沒中的期望值
: E[T|X=0]
: Q2: X和T是否獨立
: Q3: X^2的期望值E[X^2]與X變異數Var[X]
: 麻煩各位提供我一些想法,謝謝大家的幫忙
: -----
: Sent from JPTT on my Vivo V1930.
有專門的統計版,再不然還有數學版,這問題放在那裡更適當。
假設選的號碼(此例的 2,3,5,7,11,13)是固定的。
T = Z1+...+Z6, Zi 是從 1~49 隨機選出的,E[Zi] = (1+49)/2 = 25
所以 E[T] = E[Z1]+...+E[Z6] = 25*6 = 150
Zi 之間有相關,但這不影響期望值,只影響 T 的變異數計算。
X = 6 即 {Z1,...,Z6}={2,3,5,7,11,13}, 所以 E[T|X=6] = 2+...+13 = 41
X = 0 即 Z1,...,Z6 只能從已定的6個號碼之外選,
所以 E[Zi|X=0] = (1+4+6+...+49)/431 = [49(49+1)/2-41]/43 = 1184/43 = 27.53
所以 E[T|X=0] = 27.53*6 = 165.2
X 是其他值時,如 X=2,表示在 2,3,5,7,11 中取兩個號,在其他 43
個號中取 4 個號。
前者各種情形平均(對各種可能組合之平均)號碼和是 2(41/6),
後者號碼和平均是 4(1184/43),故 E[T|X=2] = 82/6 + 4736/43 = 123.9
通式 E[T|X=x] = x(41/6)+(6-x)(1184/43)
E[T|X=x] 隨 x 而變,所以 T 與 X 不獨立。
X 的分布可以算出,然後依定義式可計算 E[X], E[X^2] 及 Var[X].
事實上 X 服從超幾何分布,P[X=x] = C(6,x)C(43,6-x)/C(49,6)
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.224.176.108 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/Prob_Solve/M.1666489257.A.DAB.html
推
10/24 21:28,
2年前
, 1F
10/24 21:28, 1F
→
11/19 08:41,
2年前
, 2F
11/19 08:41, 2F
→
11/19 08:46,
2年前
, 3F
11/19 08:46, 3F
→
11/19 09:48,
2年前
, 4F
11/19 09:48, 4F
→
11/19 09:48,
2年前
, 5F
11/19 09:48, 5F
※ 編輯: yhliu (114.41.125.24 臺灣), 12/14/2022 11:27:33
→
12/21 02:35,
1年前
, 6F
12/21 02:35, 6F
→
12/21 02:37,
1年前
, 7F
12/21 02:37, 7F
→
12/21 02:37,
1年前
, 8F
12/21 02:37, 8F
討論串 (同標題文章)
完整討論串 (本文為第 2 之 2 篇):
1
8
Prob_Solve 近期熱門文章
PTT數位生活區 即時熱門文章