Re: [轉錄][問題] 遞迴關係求解

看板Prob_Solve (計算數學 Problem Solving)作者 (acer)時間15年前 (2009/09/04 00:21), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ [本文轉錄自 Math 看板] 作者: adxis (acer) 看板: Math 標題: Re: [轉錄][問題] 遞迴關係求解 時間: Fri Sep 4 00:20:52 2009 ※ 引述《vicwk (Victor)》之銘言: : ※ 引述《adxis (acer)》之銘言: : : S(0) = 0, C(0) = 0 : : S(n) = S(n-1) + 2*C(n-1) : : C(n) = n-1 + S(n) / n 後來自己有算出來 過程大致上跟板友差不多 先化簡成 n-1 C(n) = (n-1) + (2/n) Σ C(i) i=0 multiplied by n n-1 n C(n) = n(n-1) + 2 Σ C(i) -(1) i=0 telescoping n-2 (n-1)C(n-1) = (n-1)(n-2) + 2 Σ C(i) -(2) i=0 (1) - (2) n C(n) - (n-1) C(n-1) = 2(n-1) + 2 C(n-1) n C(n) = 2(n-1) + (n+1) C(n-1) divided by n(n+1) C(n) / (n+1) = 2(n-1)/n(n+1) + n C(n-1) -(a) telescoping C(n-1) / n = 2n/(n-1)(n) + (n-1) C(n-2) -(b) C(n-2) / (n-1) = 2(n-1)/(n-2)(n-1) + (n-2) C(n-3) -(c) ... C(2) / 3 = 1/3 + C(1) / 2 -(d) adding a~d n+1 C(n) / (n+1) = 2 Σ [ (i-2)/ i(i-1) ] i=3 n+1 n+1 = 2 [ Σ (2/i) - Σ 1/(i-1) ] i=3 i=3 Let H(n) = 1 + 1/2 + 1/3 + ... + 1/n ≒ r + ln(n), and r ≒ 0.577 C(n) / (n+1) = 2 { [ 2( H(n+1) - 3/2 ) ] - [ H(n+1) - (n+2)/(n+1) ] } C(n) = (n+1)( 2H(n+1) - 2 ) - (2n -1) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.123.218.30 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.123.218.30
文章代碼(AID): #1Ad-p-Oc (Prob_Solve)
文章代碼(AID): #1Ad-p-Oc (Prob_Solve)