[心得] 資料整理套件介紹-第一章 data.table

看板R_Language作者 (攸藍)時間9年前 (2015/07/21 16:25), 9年前編輯推噓4(400)
留言4則, 4人參與, 最新討論串1/1
data.table包含的東西很多 但是很多東西都可以被plyr, dplyr的function取代 所以data.table很多function,我都不太熟 這裡簡單介紹一下data.table 如果你想要了解更多,請自行去看manual 要了解data.table,我們可以先從package的description來看 "Fast aggregation of large data (e.g. 100GB in RAM), fast ordered joins, fast add/modify/delete of columns by group using no copies at all, list columns and a fast file reader (fread). Offers a natural and flexible syntax, for faster development." 簡單翻譯一下,大資料(例如,記憶體中大小為100GB的資料)的在不創建複本下,根據 類別(group)變數進行快速整合、排列、合併、增加/修改/刪除行資料等動作。... 重點就在不創建複本,因為R修改data.frame時,會先複製一次再修改, 然後傳回複本,因此,會浪費不少記憶體,而且很容易拖累速度,因此, data.table提供這方面更有效率的操作。 (這方面的速度比較可以參考#1LeXNCKV (R_Language) [分享] 資料數據處理修改) 1. data.table 這個函數基本上data.frame使用差不多,而且data.frame的參數都可以放進 像是很常用到的stringsAsFactors,只是data.table預設是FALSE, 這點跟data.frame不同,使用上需要注意,範例如下: ` R t = data.table(a = LETTERS[1:3]) str(t) # Classes ‘data.table’ and 'data.frame': 3 obs. of 1 variable: # $ a: chr "A" "B" "C" # - attr(*, ".internal.selfref")=<externalptr> t2 = data.frame(a = LETTERS[1:3]) str(t2) # 'data.frame': 3 obs. of 1 variable: # $ a: Factor w/ 3 levels "A","B","C": 1 2 3 ` 第二個差異是data.table不包含rownames, 在轉換data.frame到data.table時,要注意這點 下一章會提到把rowname轉成column的函數 附註一條:data.table都包含data.frame的class 可以用在data.frame的方法都可以在data.table上實現 但是data.table還多了一個引數 "key",我對它的解讀是一種索引的概念 而透過索引的動作都會被加速。 key可以是一個變數,也可以是多個變數,這點看個人使用。 再來,就是data.table的'[',這部分跟data.frame不太一樣 所以需要特別說明,但是這部分,我自己也不是很熟悉,我只能大概講過 a. 我們很常在data.frame做取多行的動作,在data.table是不可行的,舉例: ` R vars = data.frame(X = rnorm(3), Y = rnorm(3), Z = rnorm(3)) vars[,1:2] # X Y # 1 -0.5677575 2.1831285 # 2 -0.7161529 0.3714633 # 3 1.2665120 0.7837508 vars_dt = data.table(vars) vars_dt[,1:2] # [1] 1 2 ` 但是你想這麼做,怎麼辦? 加上with=FALSE就好了,或是用list包住column name ` R vars_dt[,1:2,with=FALSE] # X Y # 1: -0.5677575 2.1831285 # 2: -0.7161529 0.3714633 # 3: 1.2665120 0.7837508 vars_dt[j=list(X, Y)] # X Y # 1: -0.5677575 2.1831285 # 2: -0.7161529 0.3714633 # 3: 1.2665120 0.7837508 ` 剩下像是by, .SD, .SDcols等自行?data.table查看吧 data.table的部分就先說明到這,接下來,講一些相關的function b. setkey: 改變key的值, setnames: 改變column name,但是一樣不製造複本 c. copy: 製造data.table的複本 d. setDF: 在不製作複本下,把data.table的class改為data.frame 舉例: ` R DT = data.table(X = rnorm(3), Y = rnorm(3)) str(DT) # Classes ‘data.table’ and 'data.frame': 3 obs. of 2 variables: # $ X: num -1.3738 0.167 -0.0578 # $ Y: num 0.487 1.728 0.646 # - attr(*, ".internal.selfref")=<externalptr> setDF(DT) str(DT) # 'data.frame': 3 obs. of 2 variables: # $ X: num -1.3738 0.167 -0.0578 # $ Y: num 0.487 1.728 0.646 DT = data.table(X = rnorm(3), Y = rnorm(3)) tracemem(DT) # [1] "<0000000006A1BE28>" setDF(DT) # 沒有複製的動作 DF = data.frame(DT) retracemem(DF, retracemem(DT)) # tracemem[<0000000006A1BE28> -> 0x00000000061ec928]: ## 記憶體位置就發生改變了,就複製了DT一次 ` 這部分可能不太懂,不過沒關係,記住一點,要轉成data.frame用setDF就好 e. setDT: setDF的反向 f. duplicated, unique duplicated提供一個跟data.table列數相等長度的邏輯值向量, TRUE代表前面有一樣的列,FALSE代表沒有 unique則是留下沒有重複的列,舉例來說: ` R set.seed(100) DT = data.table(A = rbinom(5, 1, 0.5), B = rbinom(5, 1, 0.5)) # A B # 1: 0 0 # 2: 0 1 # 3: 1 0 # 4: 0 1 # 5: 0 0 duplicated(DT) # [1] FALSE FALSE FALSE TRUE TRUE unique(DT) # A B # 1: 0 0 # 2: 0 1 # 3: 1 0 DT[!duplicated(DT)] # A B # 1: 0 0 # 2: 0 1 # 3: 1 0 ` 不過unique還有更多功能,它可以選擇變數做unique,舉例來說: ` R unique(DT, by = "A") # A B # 1: 0 0 # 2: 1 0 unique(DT, by = "B") # A B # 1: 0 0 # 2: 0 1 ` 順便一提,dplyr的distinct,如果你input的class是data.table 它就是用unique做的 ` R library(dplyr) distinct(DT) # A B # 1: 0 0 # 2: 0 1 # 3: 1 0 ` 你如果想看distinct怎麼做,可以在R上面打dplyr:::distinct_.data.table > dplyr:::distinct_.data.table function (.data, ..., .dots) { dist <- distinct_vars(.data, ..., .dots = .dots) if (length(dist$vars) == 0) { unique(dist$data) } else { unique(dist$data, by = dist$vars) } } 之後提到distinct,我們再來講distinct 其他相關function像是subset, setcolorder, setorder (setorderv) 對這三個function有興趣,再去看manual,不贅述 這三個對應到dplyr的filter, select, arrange,之後我們會再提到這些 g. transform: 改變column的屬性、值等,舉例來說: ` R DT = data.table(a = 1:3, b = 2:4, c = LETTERS[1:3]) DT2 = copy(DT) DT[, b := b**2] DT2 %<>% transform(b = b**2) all.equal(DT, DT2) # TRUE DT %<>% transform(c = as.factor(c)) str(DT) # Classes ‘data.table’ and 'data.frame': 3 obs. of 3 variables: # $ a: int 1 2 3 # $ b: num 4 9 16 # $ c: Factor w/ 3 levels "A","B","C": 1 2 3 # - attr(*, ".internal.selfref")=<externalptr> ` h. set: 用來變更特定column,某些列的值,舉個簡單的例子 ` R DT = data.table(a = 1:3, b = 2:4) DT2 = copy(DT) DT[, b := 1] set(DT2,, "b", value = 1) all.equal(DT, DT2) # TRUE ` 一般來說都用'['來做,但是你如果需要用到for再來完成,再用set 還有一個function是 J,這裡就不提了,一樣請洽manual 最後,還有一個operator,':=',它是用來擴增data.table的column, 同樣,也不創造複本,這樣可以更快的增加column 那如果刪除怎麼辦?還記得前面學過 DT[, list('X', 'Y')],就用這個 再來,我們講一些data.table中其他function 2. fread 功能可以用來取代read.table, read.csv 它可以用多種separate去分割columns,然後讀入R 而且讀入速度比read.table, read.csv快很多 但是注意,不規則的檔案會讀入失敗 這裡提幾個參數: a. sep: column跟column之間的分隔,如果是csv就是',', 如果是tab separated values就是'\t' b. na.strings: 視作NA的字串,它可以是一個vector c. stringsAsFactors:是否要把字串轉成factor,預設是否 d. colClasses:各行的classes,可以自行設定 我愛用fread還有一個原因,第一個input可以直接放我要讀的字串, 但是read.table需要經過其他的方式,有點麻煩(我懶得記,其實沒記過) 舉例來說 ` R text = "a b 1 2 3 4" DT = fread(text) setDF(DT) # 轉成data.frame,前面學過,還記得嗎? DF = read.table(header = TRUE, text = text) # text format DF2 = read.table(textConnection(text), header = TRUE) # file format all.equal(DT, DF) # TRUE all.equal(DT, DF2) # TRUE ` fread很適合拿來讀大資料,所以有必要把table輸出成text 用文字方式處理時,讀入就變得很方便,可見 #1LegOjwB (R_Language) 還剩下 dcast.data.table, melt 跟 merge 它們會留到之後跟tidyr一起介紹 下一章重點會放在dplyr 補充: key,我也不是很熟悉,也很少用,因此,我這裡介紹的很少 如果對key有興趣,可能需要自行研究 [關鍵字]: data.table, reshape2 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 123.205.27.107 ※ 文章網址: https://www.ptt.cc/bbs/R_Language/M.1437467101.A.E6D.html

07/21 21:42, , 1F
great~ thanks for sharing~
07/21 21:42, 1F

07/21 22:40, , 2F
語言果然是會成長的
07/21 22:40, 2F

07/22 09:26, , 3F
07/22 09:26, 3F
※ 編輯: celestialgod (123.205.27.107), 07/22/2015 09:36:46

07/22 10:09, , 4F
推推~
07/22 10:09, 4F
文章代碼(AID): #1LhW7Tvj (R_Language)
文章代碼(AID): #1LhW7Tvj (R_Language)