[問題] 程式語言大部分是 Turing Complete 的嗎?

看板PLT (程式語言與理論)作者 (XOO)時間15年前 (2009/06/25 01:50), 編輯推噓1(103)
留言4則, 3人參與, 最新討論串1/6 (看更多)
基本上,好像都認為程式語言必須是 Turing complete 的, 除了少數比較特別的語言,或是特殊用途的以外。 而一般認為的語言像是 C++, Java, 或是 Haskell 之類的, 都是 Turing complete 的。但有個問題是,這是有證明的嗎? 疑問來自於,首先知道 Turing machine 跟 lambda calculus 是等價的, 而 lambda calculus 中能夠寫出 fixpoint operator, 也就是 Y combinator, 定義如下 Y = λf·(λx·f (x x)) (λx·f (x x)) 可以經由 β-reduction 得知對任何 λ-term F 而言, 具備 F(YF) = YF 的性質, 所以得到 Y 是一個 fix point 的運算。 然而,若是引入 type system 之後,Y 的型別會變成是 (a -> a) -> a 根據 Curry-Howard isomorphism 來說, 這個系統變成不一致的, 因為從 Y 的 type 跟常數函數, 可以得到 a <-> (a -> a) 這樣的陳述, 將 a 套入 False 之後,會得到 False <-> (False -> False) = True 也就推出矛盾。 所以會得到,如果若程式語言的型別系統要是一致的, 且所有的程式都要能夠 typable 的話,就會有些 λ-term 無法在系統下定義, 範例如上。所以也就有可計算的函數,無法在該系統下寫出來。 對 Haskell 來說,所有的 type 都有一個 undefined 元素,所以並不是一致, 但剩下如 C, C++, Java 這些來說呢? 不過我不大瞭解 type theory 跟 imperative language 要怎麼能夠 學理上的陳述,或許 C\C++, Java 上的 type system 性質並不完全一樣? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.109.16.218

06/25 10:51, , 1F
這個只要來個思想實驗就行了,例如以 C 寫個 TM ,
06/25 10:51, 1F

06/25 10:52, , 2F
C 寫個 TM 根本毫無困難,故得證
06/25 10:52, 2F

06/25 11:46, , 3F
在 C 裡頭寫個 TM 跟 C 語言是 Turing 完備一樣嗎?
06/25 11:46, 3F

06/25 11:54, , 4F
一樣啊,只要可以寫 UTM 就是 Turing-Complete 啊~
06/25 11:54, 4F
文章代碼(AID): #1AGcT9Tg (PLT)
文章代碼(AID): #1AGcT9Tg (PLT)