Re: [問題] 能不能直接引用這種圖

看板LaTeX (論文排版)作者 (馬士登)時間7年前 (2017/07/11 02:34), 編輯推噓1(101)
留言2則, 2人參與, 最新討論串2/2 (看更多)
※ 引述《rareone (拍玄)》之銘言: : http://imgur.com/a/9WUtP : 在看具體數學的時候看到這種方塊式子令人眼睛為之一亮 : 我也想在寫講義的時候插入這類的圖 : 可是又不想直接引用圖片 : 像這類的圖,以我目前對latex的認知 關鍵字難找 : 懇請大家給我一些意見 關鍵字也好 拜託了 >_< : 找到我要的答案 會發100p幣(稅前)作為一點小心意,謝謝 在 Knuth 老大排版的時候是這樣處理的: 【定義符號與指令】 \unitlength=3pt \def\domi{\beginpicture(0,2)(0,0) % identity \put(0,0){\line(0,1){2}} \endpicture} \def\domI{\beginpicture(0,2)(0,0) % identity when isolated \put(0,-.1){\line(0,1){2.2}} \endpicture} \def\domv{\beginpicture(1,2)(0,0) % vertical without left edge \put(1,0){\line(0,1){2}} \put(0,0){\line(1,0){1}} \put(0,2){\line(1,0){1}} \endpicture} \def\domhh{\beginpicture(2,2)(0,0) % two horizontals without left edge \put(2,0){\line(0,1){2}} \put(0,0){\line(1,0){2}} \put(0,1){\line(1,0){2}} \put(0,2){\line(1,0){2}} \endpicture} \def\Domh{\beginpicture(3,1)(-.5,0) % horizontal, stand-alone \put(2,0){\line(0,1){1}} \put(0,0){\line(0,1){1}} \put(0,0){\line(1,0){2}} \put(0,1){\line(1,0){2}} \endpicture} \def\Domv{\beginpicture(2,2)(-.5,0) % vertical, stand-alone \put(0,0){\line(0,1){2}} \put(1,0){\line(0,1){2}} \put(0,0){\line(1,0){1}} \put(0,2){\line(1,0){1}} \endpicture} 【實際用在排版】 The null tiling $\,\domI\,$, which is the multiplicative identity for our combinatorial arithmetic, plays the part of~$1$, the usual multiplicative identity; and $\domi\domv+\domi\domhh$ plays~$z$. So we get the expansion \begindisplay {\hbox{\domI}\over\domI-\domi\domv-\domi\domhh} &=\domI+(\,\domi\domv+\domi\domhh\,)+ (\,\domi\domv+\domi\domhh\,)^2+ (\,\domi\domv+\domi\domhh\,)^3+\cdots\cr &=\domI+(\,\domi\domv+\domi\domhh\,)+ (\,\domi\domv\domv+\domi\domv\domhh+\domi\domhh\domv+\domi\domhh\domhh\,)\cr &\qquad+(\,\domi\domv\domv\domv+\domi\domv\domv\domhh +\domi\domv\domhh\domv+\domi\domv\domhh\domhh +\domi\domhh\domv\domv+\domi\domhh\domv\domhh +\domi\domhh\domhh\domv+\domi\domhh\domhh\domhh\,)+\cdots\,.\cr \enddisplay This is $T$, but the tilings are arranged in a different order than we had before. Every tiling appears exactly once in this sum; for example, $\domi\domv\domhh\domhh\domv\domv\domhh\domv$ appears in the expansion of $(\,\domi\domv+\domi\domhh\,)^7$. We can get useful information from this infinite sum by compressing it down, ignoring details that are not of interest. For example, we can imagine that the patterns become unglued and that the individual dominoes commute with each other; then a term like $\domi\domv\domhh\domhh\domv\domv\domhh\domv$ becomes $\Domv^4\Domh^6$, because it contains four verticals and six horizontals. Collecting like terms gives us the series \begindisplay T = \domI+\Domv+\Domv^2+\Domh^2+\Domv^3+2\Domv\Domh^2+\Domv^4+3\Domv^2\Domh^2 +\Domh^4+\cdots\,. \enddisplay The $2\Domv\Domh^2$ here represents the two terms of the old expansion, \domi\domv\domhh\ and~\domi\domhh\domv\kern1pt, that have one vertical and two horizontal dominoes; similarly $3\Domv^2\Domh^2$ represents the three terms \domi\domv\domv\domhh\kern1pt, \domi\domv\domhh\domv\kern1pt, and \domi\domhh\domv\domv\kern1pt. We're essentially treating \Domv\ and~\Domh\ as ordinary (commutative) variables. ---------------------------- 至於我為什麼知道… http://www.latexstudio.net/archives/8383 第七章的部分。 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.35.232 ※ 文章網址: https://www.ptt.cc/bbs/LaTeX/M.1499711698.A.FA5.html

07/11 16:08, , 1F
謝謝你 這很實用 p幣已發 麻煩確認一下喔
07/11 16:08, 1F

07/11 16:32, , 2F
收到~
07/11 16:32, 2F
文章代碼(AID): #1POyZI-b (LaTeX)
討論串 (同標題文章)
文章代碼(AID): #1POyZI-b (LaTeX)