Re: [問題] 時間序列資料的訓練集切法
看板DataScience作者tipsofwarren (tipsofwarren)時間5年前 (2019/04/13 23:10)推噓1(1推 0噓 0→)留言1則, 1人參與討論串3/4 (看更多)
有人認為 Cross Validation 並不適合某些情況,
所以提出了 Rolling segmentation on training and test set.
請參考:
https://www.hindawi.com/journals/mpe/2018/4907423/
Fig2:
https://www.hindawi.com/journals/mpe/2018/4907423/fig2/
不確定是否符合你的需要
根據圖二:
M 代表 train set, N 代表 test set, M/N 的大小也許又可以是
另外一組 hyper-parameters
原文沒有講得很仔細, 不過我看完的想法應該就是 經由 M & num_steps
組成 sequence 去 train 你的 RNN/LSTM etc, 然後由 N所組成的 sequence 來
獲得 cost, 然後依此掃過你的整個 dataset, 然後把 所有 cost 加總,
用以決定最佳的 hyper-parameters. 算是某種 Cross-Validation 的變形吧.
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.160.91.133
※ 文章網址: https://www.ptt.cc/bbs/DataScience/M.1555168216.A.1F4.html
※ 編輯: tipsofwarren (118.160.91.133), 04/13/2019 23:15:52
推
04/13 23:41,
5年前
, 1F
04/13 23:41, 1F
討論串 (同標題文章)
DataScience 近期熱門文章
PTT數位生活區 即時熱門文章