[問題] svm 預測問題
問題類別: SVM (ex:ML,SVM,RL,DL,RNN,CNN,NLP,BD,Vis,etc...)
使用工具: MATLAB
問題內容:
在training完後將Model存下來(alpha, bias, SupportVector, SupportVectorLabel等
)
想不使用predict function 自己算出預測結果。
使用的架構是 one-verse-one SVM 分五類(共十個binary svm),
使用Gaussian kernel,feature維度為100,第M個SVM的support vectors數量為N個
以下是我目前的做法:
根據matlab說明先將 support vector unnormalize -> supportvector * sigma+mu
alpha: Nx1 vector, SupportVectorLabel svl: Nx1 vector, bias:1x1 double
k(x,y) = exp(-(sqrt((x-y).^2)).^2)
先將 alpha.*svl.* k(newFeature,supportVector) 得到 1x100 vector
將N個 vectors sum起來 後加上bias
想請問
1. 這樣等於feature每個維度都有加上bias 是正確的嗎
2, 理想中最後應該得到一個值 正值就分成A類 負值分到B類,
所以接下來是將100個值加起來嗎?
問題有點雜,先謝謝願意給予指教的板友了
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.137.44.238 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/DataScience/M.1575557840.A.BD5.html
※ 編輯: abogiqui (114.137.44.238 臺灣), 12/05/2019 22:59:05
→
12/06 19:46,
5年前
, 1F
12/06 19:46, 1F
→
12/06 19:46,
5年前
, 2F
12/06 19:46, 2F
→
12/06 19:46,
5年前
, 3F
12/06 19:46, 3F
→
12/06 19:47,
5年前
, 4F
12/06 19:47, 4F
→
12/06 19:48,
5年前
, 5F
12/06 19:48, 5F
→
12/06 19:51,
5年前
, 6F
12/06 19:51, 6F
DataScience 近期熱門文章
PTT數位生活區 即時熱門文章