[情報] Mobile Deep learning Resource
最近在做適合跑在嵌入式或手機上的模型
來整理一下相關研究資源好了
===================================================
Survey paper
A Survey of Model Compression and Acceleration for Deep Neural Networks
[arXiv '17]
https://arxiv.org/abs/1710.09282
--------------------------------------------------------
輕量化 Model
1. MobilenetV2: Inverted Residuals and Linear Bottlenecks: Mobile Networks for
Classification, Detection and Segmentation [arXiv '18, Google]
https://arxiv.org/pdf/1801.04381.pdf
2. NasNet: Learning Transferable Architectures for Scalable Image Recognition
[arXiv '17, Google]
註:Google AutoML 的論文
https://arxiv.org/pdf/1707.07012.pdf
3. DeepRebirth: Accelerating Deep Neural Network Execution on Mobile Devices
[AAAI'18, Samsung]
https://arxiv.org/abs/1708.04728
4. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile
Devices [arXiv '17, Megvii]
https://arxiv.org/abs/1707.01083
5. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications [arXiv '17, Google]
https://arxiv.org/abs/1704.04861
6. CondenseNet: An Efficient DenseNet using Learned Group Convolutions [arXiv
'17]
https://arxiv.org/abs/1711.09224
------------------------------------------------------------
System
1. DeepMon: Mobile GPU-based Deep Learning Framework for Continuous Vision
Applications [MobiSys '17]
https://www.sigmobile.org/mobisys/2017/accepted.php
2. DeepEye: Resource Efficient Local Execution of Multiple Deep Vision Models
using Wearable Commodity Hardware [MobiSys '17]
http://fahim-kawsar.net/papers/Mathur.MobiSys2017-Camera.pdf
3. MobiRNN: Efficient Recurrent Neural Network Execution on Mobile GPU [EMDL '17]
https://arxiv.org/abs/1706.00878
4. DeepSense: A GPU-based deep convolutional neural network framework on
commodity mobile devices [WearSys '16]
http://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=4278&context=sis_research
5. DeepX: A Software Accelerator for Low-Power Deep Learning Inference on Mobile
Devices [IPSN '16]
http://niclane.org/pubs/deepx_ipsn.pdf
6. EIE: Efficient Inference Engine on Compressed Deep Neural Network [ISCA '16]
https://arxiv.org/abs/1602.01528
7. MCDNN: An Approximation-Based Execution Framework for Deep Stream Processing Under Resource Constraints [MobiSys '16]
http://haneul.github.io/papers/mcdnn.pdf
8. DXTK: Enabling Resource-efficient Deep Learning on Mobile and Embedded
Devices with the DeepX Toolkit [MobiCASE '16]
9. Sparsification and Separation of Deep Learning Layers for Constrained
Resource Inference on Wearables [SenSys ’16]
10. An Early Resource Characterization of Deep Learning on Wearables, Smartphones
and Internet-of-Things Devices [IoT-App ’15]
11. CNNdroid: GPU-Accelerated Execution of Trained Deep Convolutional Neural
Networks on Android [MM '16]
12. fpgaConvNet: A Toolflow for Mapping Diverse Convolutional Neural Networks on
Embedded FPGAs [NIPS '17]
--------------------------------------------------------------
Quantization (Model compression)
1. The ZipML Framework for Training Models with End-to-End Low Precision: The
Cans, the Cannots, and a Little Bit of Deep Learning [ICML'17]
2. Compressing Deep Convolutional Networks using Vector Quantization [arXiv'14]
3. Quantized Convolutional Neural Networks for Mobile Devices [CVPR '16]
4. Fixed-Point Performance Analysis of Recurrent Neural Networks [ICASSP'16]
5. Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations [arXiv'16]
6. Loss-aware Binarization of Deep Networks [ICLR'17]
7. Towards the Limit of Network Quantization [ICLR'17]
8. Deep Learning with Low Precision by Half-wave Gaussian Quantization [CVPR'17]
9. ShiftCNN: Generalized Low-Precision Architecture for Inference of Convolutional Neural Networks [arXiv'17]
10. Training and Inference with Integers in Deep Neural Networks [ICLR'18]
------------------------------------------------------------
Pruning (Model Compression)
1. Learning both Weights and Connections for Efficient Neural Networks [NIPS'15]
2. Pruning Filters for Efficient ConvNets [ICLR'17]
3. Pruning Convolutional Neural Networks for Resource Efficient Inference [ICLR'17]
4. Soft Weight-Sharing for Neural Network Compression [ICLR'17]
5. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding [ICLR'16]
6. Dynamic Network Surgery for Efficient DNNs [NIPS'16]
7. Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning [CVPR'17]
8. ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression [ICCV'17]
9. To prune, or not to prune: exploring the efficacy of pruning for model compression [ICLR'18]
---------------------------------------------------------------
Approximation
1. Efficient and Accurate Approximations of Nonlinear Convolutional Networks [CVPR'15]
2. Accelerating Very Deep Convolutional Networks for Classification and Detection (Extended version of above one)
3. Convolutional neural networks with low-rank regularization [arXiv'15]
4. Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation [NIPS'14]
5. Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications [ICLR'16]
6. High performance ultra-low-precision convolutions on mobile devices [NIPS'17]
先發PAPER的整理好了 之後有空再整理其他部分
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.25.14.8
※ 文章網址: https://www.ptt.cc/bbs/deeplearning/M.1520160416.A.80C.html
※ 編輯: aa155495 (114.25.14.8), 03/04/2018 18:50:42
推
03/04 18:49,
6年前
, 1F
03/04 18:49, 1F
推
03/04 20:00,
6年前
, 2F
03/04 20:00, 2F
推
03/04 21:50,
6年前
, 3F
03/04 21:50, 3F
→
03/04 21:50,
6年前
, 4F
03/04 21:50, 4F
推
03/05 11:59,
6年前
, 5F
03/05 11:59, 5F
推
03/05 17:20,
6年前
, 6F
03/05 17:20, 6F
推
03/08 15:43,
6年前
, 7F
03/08 15:43, 7F
推
03/09 21:30,
6年前
, 8F
03/09 21:30, 8F
推
03/10 21:13,
6年前
, 9F
03/10 21:13, 9F
→
03/17 07:48,
6年前
, 10F
03/17 07:48, 10F
DataScience 近期熱門文章
PTT數位生活區 即時熱門文章